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Abstract
We have, in-situ, prepared and measured the temperature dependence of thermopower S(T) and
resistance R(T) of Bi2Te3 topological insulator (TI) thin films in the amorphous and crystalline
phase. Samples were prepared by sequential flash-evaporation at liquid 4He temperature. The
S(T) in the amorphous phase is negative and much larger compared to other known amorphous
materials, while in the crystalline phase it is also negative and behaves linearly with the
temperature. The resistivity ρ(T) in the amorphous phase shows a semiconducting like behavior
that changes to a linear metallic behavior after crystallization. S(T) an ρ(T) results in the
crystalline phase are in good agreement with results obtained both in bulk and thin films
reported in the literature. Linear behavior of the ρ(T) for T > 15K indicates the typical metallic
contribution from the surface states as observed in other TI novel materials. The low
temperature conductivity T < 10K exhibits logarithmic temperature dependent positive slope
κ≈ 0.21, indicating the dominance of electron-electron interaction (EEI) over the quantum
interference effect, with a clear two dimensional nature of the contribution. Raman spectroscopy
showed that the sample has crystallized in the trigonal R3m space group. Energy-dispersive
x-ray spectroscopy reveales high homogeneity in the concentration and no magnetic impurities
introduced during preparation or growth.

Keywords: thermopower, power factor, electron-electron interaction, Raman spectroscopy,
amorphous and crystalline topological insulator Bi2 Te3
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1. Introduction

Topological insulators (TI) are a new class of materials, which
were theoretically predicted to exist in different Bi, Sb and Te
based compounds [1–3]. Angle-resolved photoemission spec-
troscopy (ARPES) has been used to verify the topological sur-
face states of such materials [4–6]. TI have, due to strong
spin–orbit coupling, an insulating bulk energy gap and gener-
ate conducting topologically protected gapless electronic sur-
face states, which are robust against disorder and magnetic
impurities [7]. These newmaterials have very interesting prop-
erties from the basic physics point of view and for future
applications, for example, the observation of the quantum spin
Hall effect or the realization of Majorana fermions for the
application in topological quantum computation [8, 9]. The
alloy Bi2Te3 was proposed as a three-dimensional (3D) TI, and
later it was experimentally confirmed by ARPES [6] that this
system possesses a single Dirac cone on the surface. Transport
properties of different TIs, including Bi2Te3, were extens-
ively studied and it had been observed that these materials
exhibit a wide variety of exotic electric transport properties
like extremely large MR, high carrier mobility µ, light effect-
ivemass, nontrivial Berry phase, and the anomalousHall effect
[10].

Since the 1950s [11], it is well known that those materi-
als, today called TIs, are the best thermoelectrics (TE) at room
temperature, with the most special being Bi2Te3 in its bulk
form and known as one of the best TE materials for applic-
ation at room temperature and above (270–400K) with the
dimensionless high figure of merit Z= S2σ/(κe +κph)≈ 1
[12], where σ is the electric conductivity, κ= κe +κph is the
thermal conductivity, consisting of a contribution from elec-
trons κe and phonons κph, and S is the thermopower. So,
in order to improve the performance of TE it is necessary
to increase the power factor defined as PF= S2σ, which is
mainly associated to the electronic part of materials [13].

The influence of TI boundary states has long been neglected
in early thermoelectric research due to the lack of informa-
tion of its existence. In recent years this neglected issue has
attracted intensive research efforts from the theoretical and
experimental point of view to explore the contribution of TI
boundary states to thermoelectricity. For example, Dirac fer-
mions in topological edge and surface states are robust against
backscattering with defects in the crystal structure and mag-
netic and non magnetic impurities [14]. This opens the pos-
sibility of creating an ideal thermoelectric material that com-
bines the properties of a phonon-glass electron-crystal pro-
posed by Slack [15]. Summarizing the idea, creating a large
number of defects in a TI, e.g. using ion irradiation, it is pos-
sible to considerably reduce its lattice thermal conductivity
κph while retaining the high electrical conductivity of topo-
logical surface states. First theoretical predictions of topolo-
gical phases of matter are said to be ubiquitous in crystals, but
less is known about their existence in amorphous systems that
lack long-range order but possess well-defined local order that
involves, up to, neighbors larger than the fifth order [16, 17].
But in recent years new theoretical studies have appeared stat-
ing that there is the possibility of realizing topological phases

in amorphous systems [18, 19]. Very recently, the observation
of topological states in a sample of amorphous Bi2Se3 has
been experimentally demonstrated. The authors have shown
that applying a magnetic field to amorphous Bi2Se3, a typical
weak anti-localization was observed in the magnetoresistance
at small magnetic fields. Additionally, ARPES supports the
topological state interpretation with data showing consistency
with a dispersive two-dimensional surface state that crosses
the bulk gap [20].

In the present research, for the first time in the literature,
we are presenting a detailed study of the thermopower S(T)
and the resistivity ρ(T) of a Bi2Te3 thin film in the amorph-
ous and crystalline phase, this was possible only because of
the preparation method and the low temperature cryostat used.
All results from the amorphous phase are unique and new,
while the crystalline phase results are very similar to those
from the literature, where samples were prepared with more
expensive and sophisticated methods. The results of the crys-
tallized sample evidently show contribution in the S(T) and
ρ(T) of the 2D topological protected surface, while we cannot
state that the results of the amorphous phase have a topological
character, due to the limitations of magnetic fields during the
measurements and the lack of theory that supports the results
of thermopower.

2. Experimental details

Bi2Te3 alloys were prepared by melting pure bismuth and tel-
lurium (purity 99.9999%, Alfa Aesar) in proper atomic pro-
portions in an evacuated quartz ampoule at a base pressure of
approximately P≈ 10−7 mbar. After the alloy was removed
from the ampoule andmilled into pieces of 200–300µm in dia-
meter, it was introduced into a chamber for in-situ film prepar-
ation and measurement. The amorphous Bi2Te3 thin film was
prepared by rapid quenching at liquid 4He temperature under
high vacuum conditions (≈5× 10−7 mbar), i.e. the technique
called flash evaporation, which was already used successfully
to prepare TI films of Bi2Se3 [21] and Bi100−xSbx [22]. The
absolute Seebek coefficient S(T) was measured between 5 and
325K by applying a slowly alternating temperature gradient
across the thin film as described in the literature [22–24].
The temperature dependence of resistance R(T) was meas-
ured parallel to the S(T) between 1.2 and 345K, for that the
film was structured in an conventional 4-point shape. After the
sample was characterized in S(T) and R(T), it was removed
from the cryostat for additional ex-situ sample characteriz-
ation at room temperature. At this point we want to com-
ment that due to the in-situ experimental conditions used in
this work, where simultaneousmeasurements of resistance and
thermopower are being performed, the setup does not allow for
additional spectroscopic measurements (such as XPS, Raman,
XRD, LEED etc). For this reason we have only structurally
characterized the crystallized sample. Elemental analysis to
determine the atomic composition was performed using the
energy-dispersive x-ray (EDX) spectrometer coupled with a
FEI NanoLab XT 200 Dual-Beam microscope, film thick-
ness was determined by AFM and finally Raman spectroscopy
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measurements were performed with a LabRAMHR Evolution
spectrometer, using wavelength of λ= 532 nm.

3. Results and discussion

3.1. Temperature dependence of the resistivity and
thermopower

3.1.1. Resistivity in the amorphous and crystalline phase.
Temperature dependence of the resistivity ρ(T) in the amorph-
ous and crystalline phase of the investigated Bi2Te3 thin film
are shown in figure 1(a). The ρ(T) in the amorphous phase
was measured immediately after preparation, i.e. the data were
obtained during annealing and are non irreversible results
(indicated with −→ in figure 1(a), and after maximal anneal-
ing temperature was reached, the sample was again cooled and
the ρ(T) measured by increasing the temperature. These res-
ults are reversible and are indicated with double arrow (←→)
in figure 1(a). After preparation, the amorphous Bi2Te3 has
a large resistivity which decreases by increasing the temper-
ature in a non activated temperature behavior, and approx-
imately at TK ≈ 269K the film crystallizes, this is evident
by the rapid and huge decrease of the resistivity, a common
method to identify crystallization temperature of amorphous
materials [25–28]. After crystallization, the ρ behaves lin-
early during annealing up to T = 345K. We observe a remark-
able behavior of the amorphous ρ(T) at low temperatures, as
can be seen in the inset of figure 1(a), a drop in the ρ(T)
is observed starting at T = 2.29K and reaching ρ(T) = 0 at
T0 = 0.78K (determined by linear extrapolation). This beha-
vior we interpret as a sign of superconductivity, which was
already observed in amorphous TI samples of Bi100−xSbx [24].
The fact that we cannot measure zero resistance is because we
could not cool down our sample lower than 1.2K. Another
argument supporting our statement is based on the observation
of phonon-induced electron-electron interaction in disordered
superconductors [29]. It was established experimentally, as
well theoretically, that the effects of electron–electron (e–e)
interaction in 3D disordered superconductors cause a resistiv-
ity change at low temperatures (i.e. in the residual resistivity
regime) given by [30]

∆ρ(T)
ρ

=−0.919e2

4π2h

[
4
3
− 3

2
F̃− 2

ln(Tc/T)

]
× ρ

[
kBT
h̄D

]1/2
,

(1)

where e is the electronic charge, kB is the Boltzmann constant,
h̄ is the Planck constant divided by 2π, D is the diffusion con-
stant, F̃ is the electron screening parameter and Tc the super-
conducting transition temperature [30]. In order to use the
equation (1) to fit our results, it is necessary to have the value
of D, which was obtained in similar experiments by measur-
ing the magnetoresistance [31, 32], which was not possible in
our case. For this reason, in order to have a qualitative descrip-
tion of our results, we have rewritten the equation as follow-
ing, ∆ρ(T)/ρ20 =−P1T1/2 +P2T1/2/ ln(Tc/T) and added the
contribution of the usual Boltzmann transport term P3T 5 +P4,
similar as done in the literature [29, 31, 33], with the constants

Figure 1. Temperature dependence of the resistivity ρ(T). In (a)
results of the amorphous and crystalline phase. In (b) results of the
crystalline phase. The inset in (a) shows the lowest temperature of
the resistivity in the amorphous phase. The inset in (b) shows the fit
using the modified equation (1).

Pi with i = 1,2,3,4 and Tc being the fit parameters. The exper-
imental ∆ρ(T)/ρ20, with ρ0 = ρ(T= 10K), and the fit result
are shown in the inset of figure 1(b). It can be seen that the
fit describes the experimental data well, with the parameters
P1 = 5.16× 10−6,P2 = 3.6× 10−6,P3 = 2.99× 10−11,P4 =
1.9× 10−5 and Tc = 1.02K, a value little higher that the one
predicted when we extrapolate the experimental results to zero
resistance. This result leads us to state that it is highly probable
that the Bi2Te3 in the amorphous phase is superconductor, sim-
ilar as the TI Bi100−xSbx in the amorphous phase. It should be
noted that by doping Bi2Te3 with Pd Hor et al, have reported
superconductivity with a Tc = 5.5K [34].

In the crystalline phase, in general, ρ(T) of the Bi2Te3 film
shows a linear metallic behavior as shown in figure 1(b), very
similar as in the case of other TI Bi2Te3 thin films prepared
with different techniques, such as molecular beam epitaxy
[35, 36], metal organic chemical vapor deposition [37] and
DC magnetron sputtering [38]. The estimated resistivity of
our Bi2Te3 thin film is in the same order as in thin films [38,
39] and bulk [34] samples of Bi2Te3 reported in the literature.
We have payed attention to the low temperature results (i.e.
T < 10K) and plotted in figure 2 the results of the resistivity
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Figure 2. Low temperature results of the crystalline phase, in (a)
the resistivity ρ(T) and in (b) the corresponding conductivity
normalized in units of e2/π h.

vs temperature and the conductivity (in units of e2/πh) vs the
temperature in logarithmic scale. It is evident that for T⪅ 8K
the ρ(T) exhibits an upturn by decreasing the temperature.
This behavior was already reported in films [40] and bulk [41]
samples of the TI Bi2Te3 and Bi2Se3 [42].

According to many literature results, both theory [43] and
experiments, it was established that in many TI materials (non
magnetic doped) quantum interference effect (QIE), i.e. weak
localization, weak antilocalization, and many-body disorder-
enhanced electron-electron Coulomb interaction (EEI) dom-
inate the conductivity at low temperature and are responsible
for the upturn in the resistivity.

Assuming that both QIE and EEI contribute to the conduct-
ivity at low temperatures (T < 8K in our case), the total cor-
rection∆σ(T) of conductivity can be expressed as:

∆σ (T) = σ0 +∆σ (T)EEI +∆σ (T)QIE , (2)

with

∆σ (T)EEI = σ0 +
e2

πh

[
1− 3F

4

]
ln

(
T
TEEI

)
, (3)

and

∆σ (T)QIE = pα
e2

πh
ln

(
T
TQIE

)
(4)

where σ0 is the Drude conductivity (ne2τ/me), n is the elec-
tron density,m is the mass of electron, τ is the relaxation time,
F is the dimensionless screened Coulomb potential between
electrons averaged over the Fermi surface [30], and TEEI

is the characteristic temperature below which logarithmic-
dependent conductivity due of EEI starts to dominate.

The dimensionless parameter p depends on various sources
of inelastic scattering that destroy phase coherence and in a 2D
disordered electronic system p= 1 for EEI, α is a dimension-
less coefficient in Hikami-Larkin-Nagaoka (HLN) theory and
TQIE is the characteristic temperature, above which the con-
ductivity corrections due to QIE vanish.

Following literature works [40, 44–46], in order to analyze
our results, in our case wemay assumewithout any loss of gen-
erality, that TEEI = TQIE = Tmax = 5.5K, where the conduct-
ivity of the material reaches its maximum as the character-
istic temperature below which these corrections is valid. So,
finally the equation (2) in the unit of e2/πh can be written as
following:

∆σ (T) = σ0 +κ ln

(
T

Tmax

)
(5)

where ∆σ(T) = [σ(T)−σ(T= Tmax)], κ is the slope of
∆σ(T) vs ln(T) curve and it can be expressed as κ= (1+
αp− 3F/4) = ∂∆σ

∂ ln(T) , with F the Coulomb screening factor
that quantifies the screened Coulomb interaction [29, 47]. The
obtained value of κ from the fits to∆σ(T) shown in figure 2(b)
is κ= 0.21283± 0.00046. It was determined that in TI mater-
ials, κ is always positive due to the dominance of the EEI
effect [43, 44] over the QIE. In figure 2(b) we have also plotted
(as dashed lines) a correction of electrical conductivity∆σ(T)
because of the EEI in 3D materials at low temperatures, i.e.
∆σ(T)∝

√
T, evidencing that rightly so we can discard at all

the 3D nature of the correction.
Considering the values obtained in the literature for bulk

and thin films of Bi2Te3, we assume p= 1 and α=−1/2, val-
ues obtained after fitting the conductance ∆σ(B) = σ(B)−
σ(0) as a function of the perpendicular magnetic field within
the framework of the HLN theory [40, 48–50]. Thus, using
the above mentioned values for p and α, we obtain F= 0.382.
According to the theory within the Thomas–Fermi approx-
imation it is predicted −1⩽ F⩽ 1, F→ 0 in the limit of no
screening (or, bad conductors), while F→ 1 in the limit of
complete screening (or, good metals) [30, 47]. The obtained
value is very similar to the one reported for thin films of Bi2Te3
[40, 51] and Bi2Se3 [42], not only in absolute value but also
in sign. Another scattering mechanism which produce an log-
arithmic upturn in the resistivity at low temperatures is the
Kondo effect [52, 53], due to magnetic impurities, probably
introduced during the sample preparation. This contribution
we discard, because its very well known that thermopower
is very sensitive to magnetic impurities scattering, manifest-
ing as a bump-shaped feature at low temperatures as shown
in figure 3(b). This figure serves as an example of what was
measured in Au containing ≈10 ppm of Fe.

3.1.2. Themopower in the amorphous and crystalline phase.
Thermopower results in the amorphous ad crystalline phase are
plotted in figure 3. The S(T) in the amorphous phase is negative
and increases its magnitude by increasing the temperature up
to 200K to later slowly change its slope and when the sample
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Figure 3. Temperature dependence of the thermopower S(T). In (a)
results of the amorphous phase, during crystallization and
crystalline phase. In (b) results of the crystalline phase. The down
inset in (b) are results from a crystalline Au sample and upper one is
the derivative of the thermopower of our crystallized sample.

starts to crystallize, a sharp change in the S(T) is observed.
The temperature at which the sample crystallizes visible by
the S(T) results is the same as observed by the resistancemeas-
urements. Above TK the S(T) still shows a negative slope and
increases in magnitude by increasing the temperature. The
absolute value of the S(T) of the amorphous Bi2Te3 is large
in comparison to other amorphous metallic alloys, e.g. they
reach a value of S(T= 200K)< 2µVK−1 [54], i.e. two orders
less than in our investigated sample. After maximal anneal-
ing at T = 345K the crystallized sample was cooled and again
the S(T) measured, in order to make that more evident, we
have plotted the results in the figure 3(b) which show negative
thermopower over the entire range of temperatures. The neg-
ative S(T) in Bi2Te3 samples is because its Fermi energy EF

lies in the bulk conduction band due the n-type bulk carriers
induced by Te vacancies, as confirmed by the Hall effect [36]
and ARPES measurements [35]. As it can be seen, the ther-
mopower of the crystallized sample behaves almost linearly
in all temperatures measured, but careful observation leads us
to see that there is a fast change in the slope at Tsl ≈ 25K

which is made clear by linear fits shown in the figure 3(b)
and more evident if we plot the first derivative dS(T)/dT, as
shown as inset in the same figure. From our knowledge, there
is no theory discussing such behavior, although observed in
some experimental works [36, 40], pointing out the mentioned
regions with linear behavior but not discussed [40] explicitly.
But we do have an idea of where this is coming from. If we
take into account diverse results in the literature, where mag-
netotransport properties are investigated, we can observe that
one parameter which changes steadily with the temperature
is the phase coherence length lϕ, which signifies the length
over which an electron can move without losing the phase of
its eigenstate [55]. Literature results of Bi2Te3 [48, 51] show
that the lϕ(T) tends to have a value close to zero at approx-
imately T ≈ 25K, which is similar to the temperature Tsl. To
remark, the steady decrease in lϕ with temperature is expec-
ted because of the increased elastic and inelastic scattering of
charge carriers by impurities and phonons [56], and we believe
that it is the reason for the slope change in S(T), at the same
range of temperature. The change of slope can not be related
to some magnetic impurities as the effect of only a few ppm is
already noticeable. An example is thermopower of gold con-
taining ≈10 ppm of Fe plotted as inset in figure 3(b), the deep
negative peak in S(T) is a consequence of the Kondo effect
[57], which in this specific case even originated a change in the
sign of S(T). The dotted lines indicate what we would observe
without Fe impurities and the peak around 35K is identified
as consequence of the phonon drag effect [57].

3.2. Power factor in the amorphous and crystalline phase

The temperature-dependent power factors PF(T) in the
amorphous and crystalline phase for the studied Bi2Te3 sample
have been obtained from ρ(T) and S(T) results and are shown
in figure 4. Generally, in both phases, the PF(T) increases with
T, without displaying any maximum up to the maximum tem-
perature used in this investigation. The PF in the amorphous
phase is almost negligible for temperature T < 100K for later
increase up to the temperature where the sample crystallizes.
During the crystallization the PF decreases suddenly for after
increase by increasing the temperature (shown as star sym-
bols in figure 4). When we compare the PF of both phases
we can observe that for temperature 230K< T< 270K, the
PF corresponding to the amorphous phase is evidently lar-
ger than that from the crystalline phase. If we take into the
consideration that the thermal conductivity κ of the amorph-
ous phase is less than in the crystalline phase, mainly due to
phonon contribution κph, we can state that the figure of merit Z
of the amorphous phase is larger than in the crystalline phase,
probably in a larger range of temperature than the one men-
tioned above. From the PF results in the crystalline phase we
can observe that it behaves almost quadratic with the temper-
ature, as shown by the fit done and plotted as line in the same
figure. Using the extrapolated data we have compared our PF
with those from the literature for higher temperatures as shown
in the inset of figure 4, showing that our results are in good
agreement with the literature where samples were prepared
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Figure 4. Temperature dependence of the power factor PF(T) of the
amorphous and crystallized phase of Bi2Te3 thin film. The symbols
are results during and after crystallization as explained in the text.
The inset is our extrapolated data compared with results from the
literature.

with more complex methods and annealed to 650K [58] and
423K [59], respectively.

3.3. Raman spectroscopy

Raman spectroscopy is used in the last years as powerful
method to provide useful structural information, crystalline
phase, composition, and stoichiometry of different TI samples
[60, 61]. We have performed Raman measurements on our
sample at ambient conditions after the sample was annealed at
T = 345K and the results are shown in figure 5. After analyz-
ing the Raman results (figure 5) by Gaussian fitting, the fre-
quencies of the peaks and their assignment are listed in the
table 1, together with the previously reported data from the
literature in bulk and similar film thickness. In figure 5 we
can see that to obtain a good fit of the most relevant peaks of
the Raman spectrum, we have used two Gaussians in the same
position but with different intensities and widths. We interpret
this as necessary since our sample is polycrystalline and there
must be regions of the sample with crystalline structure of
nanometric size (or perhaps also grain boundaries). This inter-
pretation is supported by the Raman results of the TI Sb2Te3
[62], where the Raman spectral evolution through amorphous
to crystalline transitions was studied, and shown that Raman
peaks immediately after crystallization are wide and not very
intense. The use of Gaussian peaks that are not indexed can
be attributed to surface oxidation, also observed in other thin
films [63, 64] but not in the case of in-situ Raman measure-
ments of a ≈40 nm thick sample [65].

Considering the experimental resolution, one can see that
the peak positions of the most characteristic expected optical
phonon modes are in good agreement with the previously
reported data of Bi2Te3 in the literature [61, 64–66]. The
Raman results shown in figure 5 and the corresponding assign-
ment, indicate that our preparation method (after annealing)
leads to obtain well ordered crystalline films of Bi2Te3, with

Figure 5. Raman spectra of the crystallized phase of Bi2Te3 thin
film.

the corresponding crystal structure belonging to the space
group R3m(D5

3d) [67].

3.4. EDX spectroscopy

These experiments were done at room temperature after the
transport measurements were performed. It is here important
to note that up to this point the samples were exposed to air for
more than six months. The main aim of this experiment was to
confirm the nominal composition and if it was maintained in
comparison to the starting one, as well as to determine if some
ferromagnetic contaminants were present in the sample. One
example of the result is shown in figure 6, where peaks cor-
responding to Bi and Te are evidently observable, as well as
the presence of peaks related to the oxygen. As we mentioned,
before EDXmeasurements, the sample was exposed to air and
its well known that a oxidation process occurs. The oxida-
tion was confirmed by XPSmeasurements in the literature [68,
69]. So, without losing generality, we have quantified the res-
ults without considering the oxygen contribution and calcu-
lated the sample composition from the EDX results obtained
at three different parts of the sample. The results are presented
in the table 2. Besides confirming the absence of ferromag-
netic impurities within the detection limits of this technique,
EDX analysis allowed to verify that the actual composition of
the samples agrees with the nominal value with an error of of
±1.3%, confirming that our synthesis method (sequential flash
evaporation) is very accurate in producing the desired compos-
ition and in a good agreement with previous results of other
TIs prepared by the same technique like Bi60Se40 [21] and
Bi100−xSbx [22, 24]. We emphasize the EDX results regarding
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Table 1. Identified Raman peaks and widths (FWHM) in units of cm−1. The first row are data of this work while the other rows are from the
literature. The samples thickness is d.

d (nm) E1
g A1

1g E2
g/FWHM A2

1g/FWHM

63 38 62 102.8/4.2 134.6/11
50 [61] 39 61.1 101.5 132.4
82 [66] 38.5 61.5 101.9 132.7
830 [64] — 60.9 101.2/3.7 133.0/9
Bulk [66] 34.4 62.1 101.7 134.0
Bulk [67] 36.5 62.0 102.3/6 134.0/10

Figure 6. EDX spectrum obtained for sample Bi40Te60 at the
position Po1. The inset shows a scanning electron microscope
(SEM) image of the investigated sample at position Po1.

Table 2. Elemental composition of the Bi40Te60 sample obtained at
two (Po1, Po2) different positions in the sample.

Element Po1 (Atom%) Po2 (Atom%) Abs. Error

Bi 40.17 40.84 ±0.01%
Te 59.84 59.16 ±0.01%

the ferromagnetic impurities such as Fe, Co and Ni, because
this supports the interpretation that the upturn of the R(T) at
low temperatures is due to the EEI interaction and not because
of some ferromagnetic centers scattering process.

4. Conclusions

We have prepared Bi2Te3 thin films samples by the sequen-
tial flash evaporation method in the amorphous and crystalline
phase and measured in-situ the thermopower and resistance.
The amorphous film shows a huge and semiconductor-like
type resistivity, with a peculiar rapid decreasing for tem-
peratures T < 2.3K which we interpret as a sign of a prob-
able superconducting transition as observed in amorphous TI
Bi100−xSbx, while the thermopower also shows huge negat-
ive values up to when crystallization occurs. In the crystal-
line phase, the ρ(T) is metallic in all ranges of temperature
measured, except for T < 10K, where we have described the
upturn in R(T) because of the EEI. Thermopower in the crys-
talline phase shows linear behavior in two regions, one down

to T ≈ 25K and above another, our S(T) results are in agree-
ment with literature results, where linearity was observed in
similar samples and other TI alloys. Raman results are in good
agreement with the expected peaks for a well ordered Bi2Te3,
corresponding to the crystal structure belonging to the space
group R3m(D5

3d), and finally EDX results confirm that our pre-
paration method retained the initial concentration and that dur-
ing the film production process no magnetic impurities were
introduced. We want to conclude by mentioning that our pre-
paration method not only leads us to obtain high quality films,
but there will also be the opportunity to prepare thin films in
the amorphous phase to stepwise investigate the changes in
their electronic (as well as magnetic) properties in its evolution
towards crystalline transformation. In addition, our prepara-
tion method is compatible with processes that include litho-
graphy, giving the opportunity to study bilayers between TIs or
with other non-magnetic and magnetic materials, and explor-
ation of new properties for future applications.
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